TABLE OF CONTENTS

1.0 INTRODUCTION ... 1-4
1.1 Project Description .. 1-4
1.2 Description of Alternatives ... 1-4
 1.2.1 Alternative 1 – Proposed Action .. 1-5
 1.2.2 Alternative 2 – Design Alternative ... 1-6
 1.2.3 Alternative 3 – No Action Alternative .. 1-7
2.0 AFFECTED ENVIRONMENT .. 2-1
 2.1 Water ... 2-1
 2.1.1 Existing Public Water Distribution.. 2-3
 2.1.2 Existing Private Water Distribution .. 2-3
 2.2 Sanitary Sewer ... 2-7
 2.2.1 Sanitary Sewer System ... 2-7
 2.2.2 Private Sewer System ... 2-7
 2.3 Other Utilities .. 2-10
 2.3.1 Electricity and Natural Gas ... 2-10
3.0 IMPACT OF ALTERNATIVES ... 3-1
 3.1 Water ... 3-1
 3.1.1 Average Day, Maximum Day and Peak Hour Demands ... 3-1
 3.1.2 Minimum System Pressure .. 3-3
 3.1.3 Required Fire Flow ... 3-4
 3.1.4 Irrigation Demand ... 3-4
 3.1.5 Proposed Water Main Improvements ... 3-5
 3.1.6 Construction Impacts ... 3-7
 3.2 Sanitary Sewer ... 3-7
 3.2.1 Existing Sanitary Sewer Flow Estimate ... 3-7
 3.2.2 Estimated Sanitary Sewer Flows in Project Site ... 3-7
 3.2.3 Proposed Sanitary Sewer Improvement .. 3-9
 3.2.4 Construction Impacts ... 3-12
 3.3 Other Utilities .. 3-12
 3.3.1 Electricity and Natural Gas ... 3-12
4.0 CUMULATIVE IMPACTS ... 4-1
5.0 PROPOSED MITIGATION ... 5-1
LIST OF FIGURES
Figure 2.1-1 City of Everett Water Service Area... 2-2
Figure 2.1-2 Existing Water System... 2-6
Figure 2.2-1 Existing Combined Sanitary Sewer and Storm Drain System.............................. 2-9
Figure 2.3-1 Existing Electrical and Gas Distribution ... 2-11
Figure 3.2-1 Proposed Public Sanitary Sewer for Alternative 1 and 2 3-11
Figure 3.3-1 Proposed Electrical and Franchise Alternative 1 and 2 3-14

LIST OF TABLES
Table 3.1-1 Basis of Design for Typical ADD values.. 3-2
Table 3.1-2 Summary of Water Demand Estimate... 3-2
Table 3.1-3 Water Demand by Quadrants (Blocks).. 3-3
Table 3.1-4 Summary of Water Demand Estimate.. 3-4
Table 3.1-5 Alternative 1 and 2 Public Water Main System.. 3-6
Table 3.2-1 Summary of Sewer Design Assumptions based on Building Use 3-8
Table 3.2-2 Summary of Sewer Design Assumptions for Population 3-8
Table 3.2-3 Summary of Sanitary Sewer Estimated Flows ... 3-8
Table 3.2-4 Sanitary Sewer Estimated Flow by Quadrants (Blocks).. 3-9
1.0 INTRODUCTION
This report describes existing utilities (sewer, water and electrical) on and in the vicinity of Everett Housing Authority’s (EHA) Park District site, potential impacts to these utilities from future redevelopment under the Environmental Impact Statement (EIS) alternatives, and measures to mitigate redevelopment-related impacts to utilities.

1.1 PROJECT DESCRIPTION
The Everett Housing Authority (EHA) is proposing to redevelop approximately 16 acres of the former Baker Heights affordable housing site and adjacent rights of way (now known as the Park District), located in the Delta neighborhood in northeast Everett. The site is bounded by 12th Street on the north and about 14th Street on the south (the southeasternmost section of the site is bounded by 15th Street) and extends from just beyond Poplar Street on the west to Fir Street on the east.

The 14.8-acre Park District property owned by Everett Housing Authority is distributed among six blocks of land, with City of Everett street right-of-way (ROW) through the property. The Park District site currently contains 45 vacant buildings that previously provided 139 low-income housing units to people and families. EHA determined that due to the age and condition of the housing development, it was not feasible to continue to maintain and operate the housing. It also would not be cost-effective to modify the housing to current standards. Therefore, the residential buildings are vacant and EHA plans to demolish and remove the buildings. Two of the buildings were demolished as part of the Madrona Square Development.

The proposed redevelopment project would create a mixed-income, mixed-use community including affordable housing; retail, civic/service, and office uses; and outdoor publicly accessible open space. EHA’s goals are to offer new housing for people with a range of incomes; provide equitable investment into the diverse and underserved Delta neighborhood; and support the City’s desire for walkable communities and decarbonization. Full buildout of the Park District Project is expected to take 12 years to complete, anticipated by 2035, depending on economic and market conditions.

The development concept for the Park District would be guided by a Development Plan that would be implemented based on a Development Agreement, project-specific conditions of approval, and site-specific development permits approved by the City of Everett. The plan would reflect the mixed-use nature of the community, as permitted, and directed by the proposed Planned Development Overlay (PDO), including residential, retail/civic and service/office, and recreational opportunities. As with development plans, the Park District Development Plan would show the land uses in the Park District but would also allow for flexibility to respond to market demands.

1.2 DESCRIPTION OF ALTERNATIVES
The EIS will address the probable significant adverse environmental impacts of the development of Alternatives. EHA will be evaluating the differences among a range of long-term
redevelopment scenarios. Therefore, this EIS will analyze a range of density redevelopment options.

To conduct a comprehensive environmental review, a range of redevelopment alternatives are included in the EIS. Alternative 1 – Proposed Action and Alternative 2 – Design Alternative are intended to represent a reasonable range of land uses and densities. Alternative 1 would fully meet the EHA’s objectives for the project. While Alternative 2 would have the same development program as Alternative 1, it would not meet one of EHA’s objectives because more of the site would be covered in buildings and less useable open space for the community. A third alternative, the No Action Alternative, analyzes potential future development on the site under existing zoning.

The following is summary of the three alternatives with regards to utilities and street grid with further description described herein:

- All alternatives will require infrastructure improvements assumed with the redevelopment include new public utilities (water, sewer, storm), building-supporting utilities, improved streets, and landscaping.
- All three alternatives’ street grids/alignments for Poplar Street, Fir Street, 12th Street, and 14th Street will remain, but right-of-way widths would be extended to achieve current standards including a 60’ width at Poplar Street and 50’ at Fir Street.
- All three alternatives would provide for full replacement (or additional) low-income housing units on the site.
- Alternative 1 and 2 includes expanding the ROW and to accommodate pedestrian and bike improvements.
- Alternative 3 assumes no change to street configuration except right-of-way to be widened to City standards.
- Alternative 1 and 2 would shift the road alignment of Hemlock Street and remove Larch Street ROW and add a new ROW street between Hemlock Street and Poplar Street.
- Alternative 1 and 2 would include up to 1,500 housing mixed income housing units together with office, neighborhood commercial and neighborhood services.
- Alternative 3 does not assume new non-residential uses.
- Alternative 1 would include a new park central to the development.
- Alternatives 3 assume no new parks and open space.

For all alternatives, redevelopment of the site is assumed to be built out by the year 2035, based on 12 years for construction. The actual buildout period would depend on specific economic and market conditions.

1.2.1 Alternative 1 – Proposed Action

Alternative 1 represents the upper range potential density of mixed-use redevelopment of the site and would feature new residential, retail, civic/service, and office uses, as well as open space and parking. Land uses under Alternative 1 would include (from Chapter 2 in EIS):

- up to 1,500 multi-family housing units.
• up to 70,600 GSF of non-residential use (retail, civic/service and office uses).
• up to 1,018 structured parking spaces.
• approximately 12.4 acres of building/developed site.
• approximately 3.5 acres of natural/landscape areas with 1.5 acres of publicly accessible park.
• 15 buildings would be constructed, four to a maximum of 15 stories in height; and
• up to 3,645 residents and 141 employees.

Fifteen-story buildings are not allowed by the site’s current Residential, Multifamily land use designation and UR3 zoning classification, and would require approval of a Comprehensive Plan text amendment and Planned Development Overlay (PDO) approval.

Additional right-of-way on some streets will be dedicated per zoning requirements or pedestrian and bike improvements and public easements may be necessary for utility corridors and access. Transportation and utility infrastructure improvements would be required to support proposed uses.

See Chapter 2 of the EIS for further description of this alternative.

1.2.2 Alternative 2 – Design Alternative

Under Alternative 2, proposed redevelopment of the site would feature the same amounts of new residential units, and retail, civic/service, and office uses as Alternative 1. However, more buildings (two more) with a lower maximum height (10 stories) would be built onsite than under Alternative 1, resulting in greater site coverage. Less of the site would be in open space and less of the open space would be consolidated into a large, publicly accessible park.

This alternative matches Alternative 1 in the proposed right-of-way alignments but proposes a different breakdown of dwelling and commercial space. This alternative would include a larger building footprint with shorter buildings and not have a central park space. Land uses under Alternative 2 would include (from Chapter 2 in EIS):

• up to 1,500 multi-family housing units.
• up to 70,600 GSF of non-residential use (retail, civic/service and office uses).
• up to 1,018 structured parking spaces.
• approximately 12.7 acres of building/developed site.
• approximately 3.3 acres of natural/landscape areas.
• 17 buildings constructed to a maximum of 10 stories in height; and
• up to 3,645 residents and 141 employees.

Ten-story buildings are allowed by the site’s current Residential, Multifamily Comprehensive Plan designation, but not by the site’s UR3 zoning which would require PDO approval.

Additional right-of-way on some streets will be dedicated per zoning requirements or pedestrian and bike improvements and public easements may be necessary for utility corridors and access. Transportation and utility infrastructure improvements would be required to support proposed uses.
See Chapter 2 of the EIS for further description of this alternative.

1.2.3 Alternative 3 – No Action Alternative

Under Alternative 3, the No Action Alternative, the site would remain in its existing condition. All the existing buildings and landscaping would remain for the time being, but demolition and removal of the buildings will occur under a separate action.

This alternative is typically defined as what would most likely happen if the proposal does not move forward. According to the SEPA Rules, “no action” does not necessarily mean that nothing would occur on the site. For analysis purposes in the EIS, the No Action Alternative assumes development under the site’s existing Residential, Multifamily Comprehensive Plan designation and UR3 zoning classification, with no Planned Development Overlay or Comprehensive Plan text amendment required.

Under Alternative 3, proposed redevelopment of the site would retain the existing grid of streets; however, streets (and ROW) would be widened to meet the current City of Everett code. The proposed redevelopment would feature residential uses; no non-residential uses would be included. Fewer new housing units would be provided than under Alternatives 1 and 2. Buildings at a lower maximum height would be constructed onsite. More of the sites would be in open space than under the other alternatives because the parcel west of Poplar Street would be unbuildable due to the required building setbacks. However, no large, publicly accessible park would be provided.

Alternative 3 represents the residential-only use redevelopment of the site. Land uses under Alternative 3 would include (from Chapter 2 in EIS):

- Up to approximately 458 multifamily housing units in up to four-story buildings.
- No non-residential use (retail, civic/service and office uses).
- 377 parking spaces.
- Approximately 11.1 acres of building/developed site.
- Approximately 4.9 acres of natural/landscape areas; and
- Up to approximately 1,113 residents and no employees.

This alternative retains existing zoning.

See Chapter 2 of the EIS for further description of this alternative.
2.0 AFFECTED ENVIRONMENT

2.1 WATER
Per City of Everett’s webpage, as of July 2023, the City of Everett water system supplies water to 657,000 people and businesses in the City of Everett and surrounding areas, including EHA’s Park District (see Reference section for link to webpage). Most of the City’s water supply, including for the Park District, is from Spada Reservoir located 30 miles east of Everett at the headwaters of the Sultan River in the Upper Sultan River Watershed, an area encompassing more than 80 square miles. The reservoir has a 50-billion-gallon storage facility that serves as a collection point for rain and snowmelt from the Cascade Mountains. The annual average water usage in 2022 was 53.26 million gallons per day (data from Everett’s Water Situation Fact Sheet as of 7/2/2023. See Reference section). See Figure 2.1-1 for the City of Everett water service area.
Figure 2.1-1 City of Everett Water Service Area

Source: City of Everett
2.1.1 Existing Public Water Distribution

Water service to the site is provided by City of Everett Department of Public Works. The site is located within the “Low Service 271 Ft” pressure zone (Source: City of Everett 2020 Comprehensive Water Plan Figure 1-6).

Service to the site from the adjacent public water mains in the city right-of-way is currently from 6” cast iron water main in Pine Street via a master water meter at 14th Street and Pine Street. Based on available records provided by EHA, existing City public water mains within the project site include (See Figure 2.1-2):

- a recently installed 8-inch ductile iron dead end water main in 14th Street to serve the Baker Heights Legacy project to the south,
- a 6-inch ductile water main in 12th Street from Larch Street to Fir Street installed in 1990.
- a 6-inch cast iron water main installed in 12th Street from Poplar Street to Larch Street installed in 1970.

2.1.2 Existing Private Water Distribution

EHA owns and maintains a private water distribution system onsite that was built in the 1940s and supplies domestic water to buildings and to fire hydrants. The system has exceeded its design life expectancy, is in poor condition and does not meet current City of Everett standards. Information regarding the existing water system condition was gathered through review of available EHA construction plans, meetings with EHA maintenance staff and review of EHA’s 2004 Study of Baker Heights Existing Infrastructure Systems. See Figure 2.1-2 for map of existing water system on site and adjacent to project area.

2.1.2.a Existing Water Meter

The existing private water distribution on the site is supplied by one master water meter located on Pine Street near 14th Street intersection in the southeast corner of the site. This meter measures consumption for the entire site. The units are not individually metered.

Existing water consumption at the former Baker Heights housing site was analyzed by EHA and summarized in a 2004 study of existing infrastructure systems (See References for study). The 2004 study looked at water meter readings for the period of May 2001 through January 2003 when the housing units were occupied. Based on the readings, an Average Daily Demand (ADD) of approximately 43,400 gallons per day was estimated for the resident population of 548 at the time. Given this, water consumption at the Site was estimated to be approximately 80 gallons per resident per day. This was slightly higher than the 75 gallons per day per person consumption rate used by the City of Everett Public Works Department for estimating multi-family housing water use.

See Figure 2.1-1 for the existing water system on site.

2.1.2.b Existing Water Distribution

Based on EHA records, water is distributed and looped through the site via a 6-inch pipe that dead ends on Poplar, Larch, Hemlock and First streets. Other than a repair made to a portion of
the mainline in the mid 1990’s, this system has remained unchanged since the 1940s. The 6-inch
distribution lines internal to the site are assumed to be cast iron pipe since it was the typical
material used in the 1940s; however, available plans from the 1940s did not identify material
type. The existing private water distribution onsite provides both the domestic services to the
buildings and to the fire hydrants.

Based on EHA’s 2004 study of Bakers Heights infrastructure, the domestic service laterals have
not been upgraded since their installation in the 1940s. The lines consist of a combination of ¾-,
1-, 1¼- and 1½-inch galvanized pipe connected to a 2-inch galvanized line that branches off the
6-inch private water main. As noted in EHA’s 2004 study, galvanized pipes typically begin to
deteriorate after about 40 years of age depending on soil conditions. Since the current system is
not sub metered, it is difficult to detect leaks. EHA maintenance staff have indicated that the
service lines are in poor condition.

EHA maintenance staff have noted that lateral shutoff valves to the housing units are also
difficult to operate (due to corrosion) and to locate (some are located outside of the units,
others underneath). The ability to efficiently locate and operate these shutoff valves can
increase the probability of severe water damage if a water line broke inside of, or underneath
the house. Most buildings have outside hose bibs. These are potential locations for cross control
problems (reversal of water back into the supply side) especially on units served by a water
main at a lower elevation. EHA maintenance also suggested that the addition of individual water
meters at each unit might help to encourage efficient water consumption among residents.

Existing water pressure and flow, model results for the noted locations are shown below. Note
that the static (max day) demand and specific fire flow demand are not included in the model at
this time and were entered as 0 psi. The “Residual Pressure” to the far right is the available flow
pressure at the node when discharging at the flowrate listed for “Available Flow @Hydrant.”

- 6” DI in 12th St, east of Poplar St.

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation (ft)</th>
<th>Model node ID# at location</th>
<th>Static Demand (gpm)</th>
<th>Static Pressure (psi)</th>
<th>Test Flow (gpm)</th>
<th>Residual Pressure (psi)</th>
<th>Available Flow @Hydrant (gpm)</th>
<th>Residual Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12th & Poplar</td>
<td>106.80</td>
<td>2516</td>
<td>0</td>
<td>61</td>
<td>-</td>
<td>1,408</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

- 8” DIP at south end of the block, near 1231 Donovan Ln

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation (ft)</th>
<th>Model node ID# at location</th>
<th>Static Demand (gpm)</th>
<th>Static Pressure (psi)</th>
<th>Test Flow (gpm)</th>
<th>Residual Pressure (psi)</th>
<th>Available Flow @Hydrant (gpm)</th>
<th>Residual Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 Blk Donovan</td>
<td>97</td>
<td>J966</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>1865</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

- New 8” in 14th St., east of Hemlock St.

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation (ft)</th>
<th>Model node ID# at location</th>
<th>Static Demand (gpm)</th>
<th>Static Pressure (psi)</th>
<th>Test Flow (gpm)</th>
<th>Residual Pressure (psi)</th>
<th>Available Flow @Hydrant (gpm)</th>
<th>Residual Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14th & Larch</td>
<td>107</td>
<td>J960</td>
<td>0</td>
<td>82</td>
<td>0</td>
<td>1552</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>
The EHA maintenance personnel have also noted that the primary gate valves within the site are
difficult to operate. Gate valves allow the Fire Department, during times of an emergency, to
turn off portions of the private water system to concentrate water and pressure to specific areas
of the site for firefighting purposes. Inoperable gate valves potentially hamper the ability of the
Fire Department to perform their job.

2.1.2.c Existing Fire Hydrants
Fire protection is provided by four (4) hydrants located throughout the Site and fed by the
private distribution system. There are an additional four (4) hydrants located on the south side
of 14th Street. The hydrant spacing is typical of requirements in the 1940’s. This layout, due to its
age, does not meet current City of Everett standards and Fire Marshal requirements. Current
standard fire hydrants are to be located within 200-feet of all portions of a building.

The age of the hydrants and valves and their condition has made regular valve maintenance and
flushing of the hydrants difficult. EHA maintenance staff stated that the hydrants have not been
flushed in over 10 years. Regular flushing is important to exercise the hydrant valves, clean out
the waterlines and to evaluate the integrity of the hydrant.
Figure 2.1-2 Existing Water System
2.2 SANITARY SEWER

2.2.1 Sanitary Sewer System
The City of Everett Public Works department provides sanitary sewer service to the site. Sewer flows from the site drain into a public combined sanitary sewer stormwater (CSS) piped conveyance system that was built in the 1940s and has not been upgraded since 1949 on the site. Per as-built records from the 1940s, the combined system collects effluent from a series of laterals serving the housing units and storm runoff from inlets and catch basins located along the street. The main combined line currently discharges all this effluent and runoff into a City of Everett 48-inch main that runs through an easement along the east property line of the site.

The combined sewer mains were constructed of concrete pipe (a combination of 8 and 10-inch pipe) in the 1940s. There has been only one recent main line backup problem documented by the EHA maintenance staff. The existing system is undersized by current code. Using sizing requirements provided by the City of Everett Stormwater Management Manual, the combined system should utilize sewer pipe no smaller than 12 inches in diameter.

There is some surcharge in the 10-inch sewer line in 12th Street (and likely the 8-inch line in 14th Street) and into the 48-inch combined sewer trunk line during heavy storms per discussions with City of Everett and their sewer model simulation. See Figure 2.2-1 for the existing combined sewer system on site.

According to the City of Everett’s Sewer webpage, Everett’s wastewater system serves about 165,000 people, conveying sewage through approximately 345 miles of sewer mains, interceptors, laterals, and 31 lift stations to the Everett Water Pollution Control Facility (EWPCF). In addition, EWPCF treats sewage from three neighboring sewer systems (Mukilteo, Alderwood and Silver Lake). EWPCF has a rated capacity of 40.3 million gallons per day. Per the City of Everett Public Works Utilities Annual Financial Report for 2021, EWPCF treated 7.018 billion gallons of wastewater and processed an average of 19.2 million gallons per day.

Information regarding the existing sanitary sewer system condition herein was gathered through review of available EHA construction plans, meetings with EHA maintenance staff, review of EHA’s 2004 Study of Baker Heights Existing Infrastructure Systems, and available information from City of Everett public works. See Reference section for information.

2.2.2 Private Sewer System
The site has a combined sanitary sewer system with side sewer laterals that serve the housing units. Per EHA’s 2004 Study of Baker Heights, the laterals are constructed of clay pipe and have not been upgraded since their installation in the 1940s. EHA maintenance staff noted that several times each year there were service backups in these lines caused by root growth into the pipes. Several laterals have also collapsed in recent years resulting in costly repairs for EHA and the discharge of soil and gravel into the city owned combined mainline. Maintenance staff also noted that many of the lines have low spots (bellies) and areas of no slope that impede efficient conveyance. Due to a combination of age (approximately 80 years), material (clay pipe),
large-scale maintenance problems (root growth, pipe collapse) and existing conditions (bellies and flat spots) these services are due for replacement.
Figure 2.2-1 Existing Combined Sanitary Sewer and Storm Drain System
2.3 OTHER UTILITIES

2.3.1 Electricity and Natural Gas

Electrical service to the site is provided by Snohomish Public Utility District (PUD) No. 1. Many of the existing utility poles are between 40 and 60 years old and are showing signs of exterior dry rot. Some poles are in curb ramps, creating an obstacle for pedestrians and restricting the ability of the ramp to comply with Americans with Disability Act.

EHA maintenance staff have noted that the utility lines are low enough to create clearance issues for semi-truck and man-lift clearance. Currently the vertical clearance for these lines have been grandfathered in, allowing them to be below Section 3 of the Snohomish PUD Electric Service Requirements which require a minimum of 18 feet of clearance between the line and surface of city, county, or private roads.

Gas service to the site is provided by Puget Sound Energy.

See Figure 2.3-1 for existing electrical and franchise distribution at the site.
Figure 2.3-1 Existing Electrical and Gas Distribution
3.0 IMPACT OF ALTERNATIVES

3.1 WATER

For all the alternatives, a new public water main system would be installed in the new streets and portions of the existing street grid. The City of Everett would continue to provide water service to the site for the proposed development. MIG consulted with the City of Everett Public Works Water division and City of Everett Fire Marshal to verify existing water facilities and design requirements.

This section evaluates the water demand impacts at full buildout of the three alternatives in comparison to the existing condition.

3.1.1 Average Day, Maximum Day, and Peak Hour Demands

A water demand analysis was conducted to assess existing conditions and the three alternatives. Assumptions for water demand use for residential units of the four conditions were based on Washington State Department of Health (DOH) guidelines outlined in the Water System Design Manual, June 2020 edition. Non-residential uses (retail, civic/service and office) is not defined in DOH. Estimate for ADD based on floor space for retail, civic/service and office space is based on the assumption of 200 sf floor area per occupant/visitor and 50 gallon per person per day use. The water demands for all uses were combined to provide Average Daily Demand (ADD), Maximum Daily Demand (MDD) and Peak Hourly Demand (PHD).

The ADD values used in the analysis were based on the proposed land and housing units by quadrants (blocks) for each alternative. See Table 3.1-1 for summary the basis for water demand use.

To estimate peak hourly demand and maximum day demand conditions, the Washington State Department of Health’s Water System Design Manual, 2020 (DoH manual) was referenced.

Based on the assumptions in Table 3.1-1 and the units for each alternative, the average daily demand, maximum daily demand, and peak hourly demands were estimated. Table 3.1-2 shows a summary of the water demands for existing conditions and the alternatives. Table 3.7-3 summarized the water demand by quadrants (blocks).
Table 3.1-1 Basis of Design for Typical ADD values

<table>
<thead>
<tr>
<th>Type of Establishment</th>
<th>Design Unit</th>
<th>No.</th>
<th>Unit</th>
<th>ADD (gpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Per Apartment</td>
<td>1</td>
<td>ERU</td>
<td>200<sup>1</sup></td>
</tr>
<tr>
<td>Non-Residential Use (retail, civic/service and office use)</td>
<td>Floor Space</td>
<td>1,000</td>
<td>sf</td>
<td>300<sup>2</sup></td>
</tr>
</tbody>
</table>

¹Source: DOH Water System Design Manual, June 2020, Appendix D for residential units without yards/landscape
²Source: MIG analysis assumes 200 sf floor area per occupant/visitor and 50 gallon per person per day use

SF = square feet
ERU = Equivalent Residential Unit
ADD = Average Day Demand

Table 3.1-2 Summary of Water Demand Estimate

<table>
<thead>
<tr>
<th>Development Type</th>
<th>ADD (gpd)</th>
<th>MDD (gpd)</th>
<th>PHD (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Condition</td>
<td>44,600</td>
<td>89,200</td>
<td>163</td>
</tr>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td>387,000</td>
<td>775,000</td>
<td>1,745</td>
</tr>
<tr>
<td>Alternative 2 – Design Alternative</td>
<td>387,000</td>
<td>775,000</td>
<td>1,745</td>
</tr>
<tr>
<td>Alternative 3 – No Action</td>
<td>105,000</td>
<td>209,000</td>
<td>476</td>
</tr>
</tbody>
</table>

Source: MIG 2023
ADD = Average Daily Demand
MDD = Maximum Daily Demand (2x ADD assumed)
PHD = Peak Hourly Demand (Estimated per building using Equation 3-1 DOH Water System Design Manual)
gpd = gallons per day
gpm = gallons per minute
Table 3.1-3 Water Demand by Quadrants (Blocks)

<table>
<thead>
<tr>
<th>Development Type</th>
<th>ADD (gpd)</th>
<th>MDD (gpd)</th>
<th>PHD (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE Quadrant</td>
<td>64,200</td>
<td>128,400</td>
<td>292</td>
</tr>
<tr>
<td>NW Quadrant</td>
<td>109,800</td>
<td>219,600</td>
<td>487</td>
</tr>
<tr>
<td>SE Quadrant</td>
<td>94,000</td>
<td>188,000</td>
<td>437</td>
</tr>
<tr>
<td>SW Quadrant</td>
<td>119,400</td>
<td>238,800</td>
<td>528</td>
</tr>
<tr>
<td>Alternative 1 – Proposed Action Total</td>
<td>387,000</td>
<td>775,000</td>
<td>1,745</td>
</tr>
</tbody>
</table>

| Alternative 2 – Design Alternative Total | 387,000 | 775,000 | 1,745 |

Alternative 3 – No Action			
Block- A	0	0	0
Block- B	23,200	46,400	103
Block- C	37,200	74,400	154
Block- D	26,800	53,600	113
Block- E	14,200	28,400	74
Block- F	3,200	6,400	31
Alternative 3 – No Action Total	105,000	209,000	476

Source: MIG 2023

ADD = Average Daily Demand
MDD = Maximum Daily Demand (2x ADD assumed) (See Table 3.1-2 for assumptions)
PHD = Peak Hourly Demand (see Table 3.1-2 for assumptions)
gpd = gallons per day
gpm = gallons per minute

3.1.2 Minimum System Pressure

The city maintains normal service pressure between 30 and 100 psi. The project site is located within Everett’s “Low Service Pressure Zone, HGL at 271 ft”, referenced with City of Everett 2020 Comprehensive Water Plan.

Static pressure at nearby fire hydrants near 12th Street east of Poplar Street, 1231 Donovan Lane and 14th Street east of Hemlock Street were noted between 61 and 66 psi. (See Section 2.1)
3.1.3 Required Fire Flow

The project will be required to provide the required fire flow. The required Fire flow is function of the size of a building and the type of construction as referenced in Appendix B of the Fire Code of the City of Everett (Chapter 16.03 of the City Municipal Code). Fire flow per the code is required for buildings by EFC 507.3. Appendix B of the code allows for reductions in fire flow automatic sprinklers systems and use of the building.

The required fire flow for each of the alternatives has not been evaluated at this time. The Project team will coordinate with City Fire Marshall and architect to determine required fire flow for the improvements of each alternative given the assumed building types.

For all alternatives, we assume that the proposed buildings would have sprinklers and meet the requirement for fire flow reductions. The city simulated water main network model to analyze the possible fire hydrant flow and a residual pressure. For Alternative-1 and Alternative-2 using the proposed water network, the model results for the noted locations in full build out network are shown below. Note that the static (max day) demand and specific fire flow demand are not included in the model at this time and were entered as 0 psi.

<table>
<thead>
<tr>
<th>Location</th>
<th>Elevation (ft)</th>
<th>Model node ID at location</th>
<th>Static Demand (gpm)</th>
<th>Static Pressure (psi)</th>
<th>Test Flow (gpm)</th>
<th>Residual Pressure (psi)</th>
<th>Available Flow @Hydrant (gpm)</th>
<th>Residual Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1350 POPLAR</td>
<td>107.88</td>
<td>.992</td>
<td>0.0</td>
<td>70</td>
<td>-</td>
<td>0</td>
<td>2,883</td>
<td>43</td>
</tr>
<tr>
<td>1350 HEMLOCK</td>
<td>87.67</td>
<td>.988</td>
<td>0.0</td>
<td>79</td>
<td>-</td>
<td>0</td>
<td>3,671</td>
<td>39</td>
</tr>
<tr>
<td>1350 FIR</td>
<td>61.74</td>
<td>.990</td>
<td>0.0</td>
<td>90</td>
<td>-</td>
<td>0</td>
<td>3,507</td>
<td>60</td>
</tr>
</tbody>
</table>

3.1.4 Irrigation Demand

Typically, irrigation takes place during off-peak water demand hours; therefore, irrigation demands were not included in the modeling of the water mains. Irrigation demand was estimated for each alternative based on the proposed natural/park space areas. The maximum irrigation demand was assumed to occur during the month of July. While assuming the maximum irrigation demand of 1 inch per week, the daily demand estimate for irrigation was determined to be only a small percentage of the total water demand for the Park District redevelopment. Table 3.1-4 shows each alternative Irrigation Demand for the redevelopment.

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Acres</th>
<th>SF</th>
<th>MDD* (gpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td>3.5</td>
<td>152,500</td>
<td>13,600</td>
</tr>
<tr>
<td>Alternative 2 – Design Alternative</td>
<td>3.3</td>
<td>143,800</td>
<td>12,800</td>
</tr>
<tr>
<td>Alternative 3 – No Action</td>
<td>4.9</td>
<td>213,500</td>
<td>19,000</td>
</tr>
</tbody>
</table>

Source: MIG 2023
3.1.5 Proposed Water Main Improvements

For all the alternatives, the existing private system is in poor condition and would be replaced with new public water mains and fire hydrants to bring the water system up to current City of Everett standards. New water service connections would be provided to the new buildings.

3.1.5.a Alternative 1 – Proposed Action

New public eight-inch water mains would be installed in the ROW of Poplar, Hemlock and Fir Streets and connect to an 8-inch water main in 12th and 14th Streets. Portions of the existing public six-inch cast iron water main in 12th Street would be replaced with an 8-inch ductile iron pipe. The new 8-inch ductile iron water main in 14th street would remain. See Figure 3.1-1 for proposed public water main distribution plan.

New water meters would be installed to provide fire and domestic service. Each building would be separately metered and have one domestic and fire service. Water service to the buildings within a quadrant/block would come from the public water main along the street frontage.

3.1.5.b Alternative 2 – Design Alternative

Under Alternative 2, proposed redevelopment of the site would feature the same amounts of new residential units, retail, civic/service, and office uses as Alternative 1. However, more buildings (two more) with a lower maximum height would be built onsite compared to Alternative 1. The water infrastructure improvements will be the same as Alternative 1.

3.1.5.c Alternative 3 – No Action

To bring the existing water system up to current code and Fire Marshal requirements, the existing private distribution system within the existing street grid would be replaced with new public water mains, 6-inch or larger diameter pipes, and connect to existing public water mains in 12th Street and 14th Street. The existing 6-inch cast iron water main in 12th Street would be replaced. New meters would be installed off the new mains and service each block of multiple housing unit buildings. New fire hydrants off the public mains would be installed and located per current City standards and code.
Table 3.1-5 Alternative 1 and 2 Public Water Main System
3.1.6 Construction Impacts

Construction of proposed water improvements for Alternatives would be scheduled with other infrastructure improvements, including sewer, stormwater control, street, and other utilities. In general, underground pipes would be replaced, Temporary Erosion and Sediment Control (TESC) Best Management Practices (BMPs) implemented per the City of Everett regulations to address the potential for erosion/sedimentation with clearing, grading, and trenching for utilities.

3.2 SANITARY SEWER

3.2.1 Existing Sanitary Sewer Flow Estimate

Estimates for existing sanitary sewer flows into the combined sewer were estimated by determining the occupancy and flow per residential units that were occupied on the site prior to the current buildings being vacant or demolished. Estimates for the existing sanitary sewer flows per unit count were based on assumptions from Washington State Department of Ecology Criteria for Sewage Works Design, 2008. See Table 3.2-1 for assumptions for estimating sewer flows. See Table 3.2-3 for summary of estimated sewer flows for the existing conditions.

For estimates of the existing combined sewer flows (stormwater and sewer) see the Water Resources Report.

3.2.2 Estimated Sanitary Sewer Flows in Project Site

Sanitary sewer flows generated by the redevelopment for each alternative and existing condition were estimated by MIG by determining the occupancy and flow per residential units and non-residential use (retail, civic/service and office). GGLO, the architect for the EHA Park District Redevelopment EIS, provided this unit count breakdown per quadrant and per building. For existing conditions analysis shown in Table 3.2-2 was based on 223 units are in the Park District project limit (total units in Baker Heights was 244 units).

MIG applied a flow per unit count based on assumptions from Washington State Department of Ecology Criteria for Sewage Works Design, 2008. MIG estimated the Average Daily Flow in gallons per day (gpd) and Peak Hourly Flow from the estimated flows in gallons per minute (gpm) for each quadrant and block.

Sanitary sewer flows for each alternative were estimated by determining the occupancy and flow per residential and non-residential (retail, civic/service and office) land-use. Residential flows were based on the number of dwelling units and bedrooms multiplied by a standard sanitary sewer collection criterion of 200 gallons per day (gpd) per bedroom. Non-residential use (retail, civic/service and office uses) flows were based on square footage of the building area. See Table 3.2-1 and Table 3.2-2 summarize assumptions used for estimating peak sewer flows for the alternatives. The flow per unit count and a peaking factor was applied based on assumptions from Washington State Department of Ecology Criteria for Sewage Works Design. Peaking Factor is a ratio of Peak Hourly Flow estimated with population for each alternative.
(The largest volume of flow anticipated to occur during a one-hour period) to Daily Average Flow. Table 3.2-3 summarizes the sanitary sewer estimated flows for the three alternatives. Table 3.2-4 summarizes the sanitary sewer estimated flows by each block/quadrant development within an alternative. See Figure 3.2-1 for the proposed public sewer main distribution and location of quadrants/blocks for Alternative 1 and 2.

Table 3.2-1 Summary of Sewer Design Assumptions based on Building Use

<table>
<thead>
<tr>
<th>Building Use/Discharge Facility</th>
<th>Design Unit</th>
<th>Unit</th>
<th>Flow (gpd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential - Apartment</td>
<td>per bedroom</td>
<td>1 bedroom</td>
<td>200<sup>1</sup></td>
</tr>
<tr>
<td>Non-residential (retail, civic/service and office uses)</td>
<td>Per area of floor space</td>
<td>1000 sf</td>
<td>300<sup>2</sup></td>
</tr>
</tbody>
</table>

¹Source: 100 gpd per person, Table G2-2 DOE Criteria for Sewage Works Design 2008, Assumed 2 people per bedroom

²Source: 300 gpd per 1,000 sf shopping center, Table G2-2 DOE Criteria for Sewage Works Design 2008; MIG analysis assumes 200 sf floor area per occupant/visitor and 50 gallon per person per day use

gpd=gallons per day sf=square feet

Table 3.2-2 Summary of Sewer Design Assumptions for Population

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Units</th>
<th>Bedrooms</th>
<th>P</th>
<th>Peak Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Condition</td>
<td>223</td>
<td>408</td>
<td>0.82</td>
<td>3.9</td>
</tr>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td>1,500</td>
<td>1,872</td>
<td>3.80</td>
<td>3.4</td>
</tr>
<tr>
<td>Alternative 2 – Design Alternative</td>
<td>1,500</td>
<td>1,872</td>
<td>3.80</td>
<td>3.4</td>
</tr>
<tr>
<td>Alternative 3 – No Action</td>
<td>458</td>
<td>548</td>
<td>1.10</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Source: MIG 2023

Notes:
1. P=Population in thousands
2. Assume 2 people per bedroom
3. Peak Factor = Q peak hourly / Q peak design average = [18+ (P)^0.5] / [4+(P)^0.5] , using Figure C1-1, DOE Criteria for Sewage Works Design 2008
4. Number of Bedrooms estimated based on distribution of unit sizes per building.

Table 3.2-3 Summary of Sanitary Sewer Estimated Flows

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Average Daily Flow (gpd)</th>
<th>Peak Hourly Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing Condition</td>
<td>81,600</td>
<td>0.49</td>
</tr>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td>396,000</td>
<td>2.09</td>
</tr>
<tr>
<td>Alternative 2 – Design Alternative</td>
<td>396,000</td>
<td>2.09</td>
</tr>
<tr>
<td>Alternative 3 – No Action</td>
<td>110,000</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Source: MIG 2023
gpd= gallons per day cfs=cubic feet per second
Table 3.2-4 Sanitary Sewer Estimated Flow by Quadrants (Blocks)

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Average Daily Flow (gpd)</th>
<th>Peak Hourly Flow (gpm)</th>
<th>Peak Hourly Flow (cfs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative 1 – Proposed Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NE Quadrant</td>
<td>67,800</td>
<td>160</td>
<td>0.36</td>
</tr>
<tr>
<td>NW Quadrant</td>
<td>89,000</td>
<td>210</td>
<td>0.47</td>
</tr>
<tr>
<td>SE Quadrant</td>
<td>121,000</td>
<td>286</td>
<td>0.64</td>
</tr>
<tr>
<td>SW Quadrant</td>
<td>117,800</td>
<td>278</td>
<td>0.62</td>
</tr>
<tr>
<td>Alternative 1 – Proposed Action Total</td>
<td>396,000</td>
<td>934</td>
<td>2.09</td>
</tr>
<tr>
<td>Alternative 2 – Design Alternative Total</td>
<td>396,000</td>
<td>934</td>
<td>2.09</td>
</tr>
<tr>
<td>Alternative 3 – No Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block- A</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Block- B</td>
<td>27,800</td>
<td>66</td>
<td>0.16</td>
</tr>
<tr>
<td>Block- C</td>
<td>28,800</td>
<td>68</td>
<td>0.17</td>
</tr>
<tr>
<td>Block- D</td>
<td>32,200</td>
<td>76</td>
<td>0.19</td>
</tr>
<tr>
<td>Block- E</td>
<td>17,000</td>
<td>40</td>
<td>0.10</td>
</tr>
<tr>
<td>Block- F</td>
<td>3,800</td>
<td>9</td>
<td>0.02</td>
</tr>
<tr>
<td>Alternative 3 – No Action Total</td>
<td>110,000</td>
<td>259</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Source: MIG 2023

gpd = gallons per day gpm = gallons per minute cfs = cubic feet per second

3.2.3 Proposed Sanitary Sewer Improvement

The City of Everett would continue to provide sewer service to the site for the proposed development. New sanitary sewer mains would be installed in the new streets and then convey flow to the existing 48-inch combined sewer at the NE corner of the site. Design for the new sanitary sewer mains would be in accordance with City of Everett’s Design and Construction Specifications, Section 6-Sanitary Sewers along with other requirements referenced in Washington State Department of Ecology Criteria for Sewage Works Design, August 2008.

3.2.3.a Alternative 1 – Proposed Action

Wastewater and stormwater flows from the project would be separated into different lines prior to discharge into the 48-inch combined main that runs along the east site boundary. See Figure
3.2-1. A new 8-inch sanitary sewer mains would be constructed in Hemlock Street and Fir Street.

- Side sewers from the SW and NW quadrants of the project site would connect to the new 8-inch sewer main in Hemlock Street. The main in Hemlock Street would connect to the existing sanitary sewer in 12th Street, which connects to the existing 48-inch combined sewer main at the northeast corner of the project site.
- Side sewers from the SE and NE quadrants of the project site would connect to the new 8-inch sewer main in Fir Street. The new main would connect to the existing 48-inch combined sewer main at the NE corner of the project site.

It is assumed no major upgrades to the city sewer system downstream of the site would be required to serve the proposed development.

3.2.3.b Alternative 2 – Design Alternative

Under Alternative 2, proposed redevelopment of the site would feature the same amounts of new residential units, retail, civic/service, and office uses as Alternative 1; thus, the estimated sanitary sewer flows would be the same as Alternative 1.

Wastewater and stormwater flows from the project would be separated into different lines (sanitary sewer and storm sewer pipes) prior to discharge into the 48-inch combined main that runs along the east site boundary. Sewer main improvements for Alternative 2 are the same as Alternative 1. See Figure 3.2-1.

It is assumed no major upgrades to the city sewer system downstream of the site would be required to serve the proposed development.
Figure 3.2-1 Proposed Public Sanitary Sewer for Alternative 1 and 2
3.2.3.c **Alternative 3 – No Action**
The City of Everett would continue to provide sewer service to the site for the proposed development. The existing EHA owned and maintained private sewer service and sanitary sewer mains are to be replaced to meet current city requirements for a separated system. New sewer mains would be installed in the existing street grid (within the widened ROW). Wastewater and stormwater flow from the project would be separated into different sewer lines prior to discharge into the 48-inch combined main that runs along the east site boundary. It is assumed no major upgrades to the city sewer system downstream of the site would be required to serve the proposed development.

Estimate for sanitary sewer flows for Alternative 3 are noted in Table 3-2.3.

3.2.4 **Construction Impacts**
Construction of proposed sewer improvements for Alternatives 1-3 would be scheduled with other infrastructure improvements including water, stormwater control, street, and other utilities. Interruptions of sewer services to current users adjacent to the site would be minimized. A temporary bypass when connecting to existing combined sewer mains would occur to continue to service to adjacent properties. In general, during grading and excavations for underground pipes Temporary Erosion and Sediment Control (TESC) Best Management Practices (BMPs), per City of Everett regulations would be used.

3.3 **OTHER UTILITIES**

3.3.1 **Electricity and Natural Gas**
Snohomish PUD No. 1 would continue to provide electrical service to the site and Puget Sound Energy could continue to provide service to the site.

3.3.1.a **Alternative 1 – Proposed Action**
Snohomish PUD No. 1 would continue to provide electrical service to the site. Electricity would be used for 100% of the energy for the project’s heating and residential appliances. Electrical lines onsite would largely be below-ground. The electrical line along 12th Street and Poplar Street may remain above ground. Natural gas could be used by the non-residential uses (e.g., for restaurant cooking and back-up generators, per code) and would continue to be provided by Puget Sound Energy. No major upgrades to the Snohomish PUD No. 1 or Puget Sound Energy systems would be required to serve the project.

3.3.1.b **Alternative 2 – Design Alternative**
Snohomish PUD No. 1 would continue to provide electrical service to the site. Electricity would be used for 100% of the energy for the project’s heating and residential appliances. Electrical lines onsite would largely be below-ground. The electrical line along 12th Street and Poplar Street may remain above ground. Natural gas could be used by the non-residential uses (e.g., for restaurant cooking and back-up generators, per code) and would continue to be provided by Puget Sound Energy. No major upgrades to the Snohomish PUD No. 1 or Puget Sound Energy systems would be required to serve the project.
3.3.1.c Alternative 3 – No Action

Snohomish PUD No. 1 would continue to provide electrical service to the site. Electricity would be used for 100% of the energy for the project’s heating and residential appliances. Electrical lines onsite would largely be below-ground. The electrical line along 12th Street and Poplar Street may remain above ground. Natural gas could be used provided by Puget Sound Energy. No major upgrades to the Snohomish PUD No. 1 or Puget Sound Energy systems would be required to serve the project.
Figure 3.3-1 Proposed Electrical and Franchise Alternative 1 and 2
4.0 CUMULATIVE IMPACTS

It is assumed that necessary improvements, extensions, or connections to existing utilities associated with other projects adjacent would be designed and constructed in compliance with the applicable City of Everett regulations, like the Park District. As a result, no significant cumulative utility impacts are anticipated from these other projects, in combination with the Park District redevelopment.
5.0 PROPOSED MITIGATION

5.1 WATER
The design and construction of all water distribution facilities would comply with the City of Everett Department of Public Works regulations for extensions and improvements to the City’s water system.

Water mains would be located within the site’s new roadway network or easements, consistent with the City of Everett Public Works water regulations and design standards.

5.2 SANITARY SEWER
The design and construction of public sanitary sewer systems would comply with the City of Everett Department of Public Works standard plans and specifications for extensions and improvements to the City’s sewer system.

The public sanitary sewer system would be located within the site’s new roadway network or easements, consistent with the City of Everett public works sanitary sewer regulations and design standards.

5.3 POWER AND FRANCHISE
The design and construction of electrical and franchise utilities would comply with the City of Everett regulations and utility purveyors’ requirements for each alternative.

6.0 SIGNIFICANT UNAVOIDABLE ADVERSE IMPACTS
No significant unavoidable adverse impacts are anticipated for each alternative.
7.0 REFERENCES

City of Everett, 2020 Comprehensive Water Plan
https://www.everettwa.gov/DocumentCenter/View/28041/Everett-2020-Comprehensive-Water-Plan-

Everett’s Water Situation Fact Sheet, July 2, 2023, https://www.everettwa.gov/1287/Water-supply

City of Everett Water System website as of July 2023 https://www.everettwa.gov/444/Water-System

Everett Housing Authority Baker Heights Housing, Existing Infrastructure Systems Study January 26, 2004, prepared by SvR Design Company.
